
INL/EXT-18-45315
Revision 0

Graphite 
Characterization:
Baseline Variability 
Analysis Report

Mitch Plummer
Andrea Mack

June 2018



DISCLAIMER
This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness, of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial product, 
process, or service by trade name, trade mark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the U.S. Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect 
those of the U.S. Government or any agency thereof.



INL/EXT-18-45315
Revision 0

Graphite Characterization: 
Baseline Variability Analysis Report

Mitch Plummer
Andrea Mack

June 2018

Idaho National Laboratory
ART Program

Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517





INL ART Program

Graphite Characterization: 
Baseline Variability Analysis Report

INL/EXT-18-45315
Revision 0

June 2018





v

EXECUTIVE SUMMARY
The Idaho National INL’s Baseline Material Property program provides 

many measurements of different material properties on a variety of nuclear 
graphite grades being investigated for irradiation-induced changes in material 
properties. The baseline material properties provide an unirradiated reference for 
comparison with measurements of those properties after irradiation. This study 
describes how uncertainty, or variance, in estimates of important material 
properties, like compressive strength, may depend on sample size, sample 
distribution and parameter estimation methods. Compressive strength data from 
two large collections of specimens from a billet of PCEA graphite (sample size =
230) and a billet of IG-110 graphite (sample size = 48) are used to illustrate these 
dependencies. The grades of graphite used represent approximate end members 
in terms of relative variability in strength measurements.

Monte Carlo simulation and bootstrapping methods were used to examine 
variance in Weibull-parameter estimates as a function of sample size. Results 
were consistent with what previous statistical analyses have shown about the 
relationship between sample size and width of the confidence interval for 
maximum likelihood (ML) estimated parameters when samples are repeatedly 
drawn from a Weibull distribution. As a function of sample size, the precision of 
the modulus estimate increases faster than that of the characteristic strength. The
modulus maximum likelihood estimates (MLEs) are biased for low sample sizes.

The American Society for Testing and Materials document ASTM D7846-16
provides equations that describe the dependence of the variance of parameter
MLEs on sample size. Using the same methodology, we show that the 
polynomials provided for variance dependence on sample size are inaccurate for 
sample sizes greater than ~120. We provide approximations to that relationship 
that illustrate relative constancy for sample size > ~10, in the logspace 
relationship of the modulus variance and the log transformed characteristic 
strength variance.

Bootstrapping provided a means of comparing Weibull parameters obtained 
using ASME’s guidance for specimen collection to those obtained using different 
weighting in a case where strength is related to position in a billet and to grain 
orientation and a single distribution is used to characterize the billet. ASME 
specifies that samples be collected with equal representation in all locations and 
grain orientations. Parameter values obtained using ASME’s method were 
different from those obtained using random sampling of the complete data sets, 
and this was particularly true for the PCEA data. In addition, while the ASME 
approach yielded more conservative parameters for the PCEA data, the opposite 
was true for the IG-110 data. The difference observed for the PCEA data set 
likely reflects the larger number of against-grain specimens collected, which had 
generally higher strength than the with-grain specimens. This emphasizes the 
importance of the dependence of strength on location or grain orientation and 
suggests that it may be prudent to weight specimen collection toward the weaker 
subgroups if a conservative estimate as desired, as the equal weighting method 
recommended by ASME would will not always provide the most conservative 
Weibull parameters. Because spatial correlations commonly exist in certain 
grades of graphite, future work may involve developing a methodology for 
parameter inference that relaxes the assumption of independent specimens.
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ASTM and ASME codes recommend different parameter estimation methods 
and models of the Weibull distribution in different situations. Descriptions of the 
effects on parameter estimates for the example billets used in this study provide 
an example of how the method may affect the parameter estimate, and how—in 
this case—that compares to differences due to other factors, such as sample size 
and dependence on grain orientation or sample location. 
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Graphite Characterization: 
Baseline Variability Analysis Report

1. INTRODUCTION
High-purity graphite is the core structural material of choice in the High Temperature Reactor (HTR) 

design; a graphite-moderated, helium- or molten-salt-cooled design that is capable of producing process heat 
for power generation and for industrial processes that require temperatures higher than the outlet 
temperatures of present nuclear reactors. Nuclear-grade graphite is an ideal material for this design based on 
its thermal stability, neutron moderation, machinability, and low cost. However, the material properties of 
nuclear graphite are more variable, especially the new grades developed for advanced reactor designs. For 
example, the quasi-brittle mechanical properties of graphite have been demonstrated to exhibit a relatively 
large amount of variability in measured strength levels. Breaking strengths depend on the inherent defect 
structure, composed of boundaries between filler particles, pores, voids, inclusions, and cracks that are 
present. Therefore, the measured mechanical properties in various graphite grades is strongly a function of 
the size distribution of these defects and their relative orientation with respect to the stress axis. While 
characterization of past nuclear-grade graphite was extensive, historical nuclear grades no longer exist
(Allen et al. 2008). New grades with little operational experience must be fabricated, characterized, and 
irradiated in order to demonstrate that current grades of graphite exhibit acceptable irradiated and 
unirradiated properties for the thermomechanical design of HTR core components.

The Department of Energy (DOE) Advanced Reactor Technologies (ART) Graphite Research and 
Development program seeks to understand the irradiated and unirradiated properties of these relatively new 
grades of nuclear graphite. The Advanced Graphite Creep experiment of that program is designed to 
understand how variability in irradiation temperatures, dose, and levels of stress affect nuclear-grade 
graphite material. The Baseline Graphite Characterization project complements that experiment by 
characterizing unirradiated graphite material properties to establish the batch-to-batch, billet-to-billet, and 
within-billet variability of the material across different grades. This characterization will establish a 
comprehensive set of material properties data, collected in accordance with the American Society of 
Mechanical Engineers (ASME) Nuclear Quality Assurance program (NQA-1-2008/1s-2009). This baseline 
material properties data set be used in the design and licensing of HTR core components and as a reference 
for comparison to irradiated material properties. Nuclear graphite grades included in the data set differ in
grain size, fabrication process, coke source, and production readiness (i.e., how long the specific grade has 
been in large-scale production). While all grades are “production ready,” meaning that they have been 
developed enough to produce full-size batches of billets capable of providing enough material to fill a 
reactor core, some of the grades are more established than others in terms of general testing and use. 

As part of the Baseline Graphite Characterization project, this report describes methodologies to assess 
within-billet variability in material properties, applies these methodologies to two newer nuclear-grade 
graphite materials, and compares material properties of these newer grades to those of more established 
grades.

Qualification of nuclear reactor designs has historically relied upon representative material-property 
data for reactor-grade graphite, particularly tensile and compressive strength, to ensure the structural 
integrity of the core. Due to the quasi-brittle nature of graphite, ASME codes specify methods for sample 
collection and modeling of strength variables using the Weibull strength-distribution method. The ASME 
code for design of graphite reactor-core components requires characterization using either a two- or 
three-parameter Weibull distribution and provides guidelines for design based on anticipated stress and 
probability of failure determined from the Weibull parameters. Complementing the ASME code is the 
American Society for Testing and Materials (ASTM) standard (ASTM D7846-16), which describes a 
specific methodology for estimating the parameters of the two-parameter Weibull distribution.
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In this study, the dependence of Weibull-parameter variability within a single billet is evaluated as a 
function of graphite type and the number and location of compressive strength measurements. 
Understanding how uncertainty in mechanical strength Weibull parameters varies as a function of the 
number and position of measurements will provide guidance for qualification of newer nuclear-grade 
graphite materials and will enable the ART Graphite Baseline project to quantify how additional testing 
might serve to improve characterization of material properties.

2. BACKGROUND
The Energy Policy Act of 2005 mandated the construction and operation of a high-temperature 

gas-cooled reactor (HTGR) by 2021. As a result of the Act, the U.S. Congress chose to develop what 
became known as the Next-Generation Nuclear Plant, which was to be a high-temperature gas reactor 
(HTGR) designed to produce sufficiently high-temperature process heat for hydrogen production, as well as 
energy for electricity generation. High-purity synthetic graphite is the core structural material of choice for 
HTR designs due to its capacity as both neutron moderator and reflector, stability at high temperature, 
machinability, and low cost. Understanding the material properties of nuclear-grade graphite is thus critical 
to development of robust HTGR designs. Unfortunately, while the general manufacturing processes 
necessary for producing nuclear-grade graphite are known, historical nuclear-grades are no longer produced
(Allen et al. 2008). New grades must be fabricated, characterized, and irradiated to demonstrate that they 
exhibit acceptable irradiated and unirradiated properties for the thermomechanical design of HTGR core 
components. Accordingly, the DOE ART program initiated a Graphite Research and Development program 
in 2005 to provide material data (both unirradiated and irradiated data) necessary for the eventual utilization 
of these graphite grades for nuclear core components in HTR applications.

The Baseline Graphite Characterization program endeavors to provide a high-resolution (large sample 
size of multiple precise measurements) data set describing as-manufactured mechanical and physical 
baseline (unirradiated) properties in nuclear-grade graphite. The dataset is also a reference for other 
characterization studies to illustrate how uncertainty in material properties changes with sample size. The 
program also collected data on individual specimen source, position, and orientation information in order to 
provide comparisons in distributional properties between different positions within a single billet.

The two grades of graphite considered in this study, PCEA and IG-110, represent approximately
opposite ends of the spectrum of variability of material properties. PCEA is a new petroleum-coke grade
produced by GrafTech with a medium (~800 and formed via an extrusion process. 
It was originally designed to replicate the historical H451 grade used in previous prismatic HTGR designs. 
IG-110 is a petroleum-coke graphite with a superfine isotropic microstructure from Toyo Tanso, formed via 
cold isostatic molding. IG-110 might be considered the most established of all nuclear grades currently 
available; it has been used in prismatic and pebble-bed applications and has been discussed for molten-salt 
applications.

Compressive strength at failure was chosen as the graphite characterization measure for this study due 
to the very large datasets for each grade. Strength at failure is a critical design criterion for graphite core 
components and may be used as a comparison of the relative quality of two materials, the prediction of the 
probability of failure for a structure of interest, or to establish load limits for a particular level of probability 
of failure (ASTM D7846-16).

The Weibull distribution is an extreme value distribution which Weibull (1951) considered to provide 
the appropriate mathematical description of the size effect of failures in solids. In a review of statistical
models of fracture relevant to nuclear-grade graphite, Nemeth and Bratton (2011) concluded that the 
Weibull distribution is the most appropriate statistical distribution to model the stochastic behavior of the 
strength of graphite. That conclusion is consistent with analysis methodologies described in ASME and 
ASTM documents describing analysis of graphite strength at failure; therefore, the Weibull distribution was 
used in this work to model the distribution of breaking strengths within a billet.
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The two-parameter Weibull distribution equation is( ) =   ; , > 0,    0( ) = 0 ,    < 0 (1)

where m is the Weibull modulus, or shape, parameter, is the characteristic strength, or scale parameter, 
and x is the compressive strength at failure. The Weibull distribution is presently the only statistical 
analysis technique that is specifically adopted as an ASTM standard (ASTM D7846-16) for the evaluation 
of graphite mechanical properties. The ASME code for design of graphite reactor core components 
describes estimation methods for both two- and three-parameter Weibull distributions to model failure of 
a graphite component. In a three-parameter Weibull distribution, a third “location” parameter defines an 
effective minimum strength of the material. In this study, we focus on the ASTM-referenced method, 
maximum likelihood (ML) estimation of the two-parameter Weibull distribution, and how uncertainty in 
the parameter estimates varies with sample size. We also compare that uncertainty to how parameter 
estimates are affected by specimen distribution, estimation method, and choice of Weibull model. 

As described in ASTM D7846-16, Weibull parameter estimates should be consistent and efficient,
meaning that as the amount of information in the sample increases, the estimator should approach the true 
parameter with the minimum sampling variance of all other estimators. The uncertainty in estimates 
depends on the number of samples. As the number of specimens (sample size) increases, the uncertainty 
in the parameter estimates decreases, narrowing the width of confidence intervals for a specified level of 
statistical significance. In this report, we examine the bias and uncertainty of parameter estimates found 
using a large sample of strength-at-failure measurements from two billets of different grades of graphite
characterized as part of the Baseline Graphite Characterization effort. While other studies (Price 1976) 
have used large collections of measurements from a single block of graphite (2000 tensile and four-point 
bend tests on a single log of Great Lakes Carbon Corporation grade H-451) to examine variability of 
mechanical properties and dependence on location and grain orientation, this is, to our knowledge, the 
first such large-scale sampling study of modern nuclear-grade graphite.

Previous studies have examined the bias introduced by different estimators, and described methods of 
reducing that bias. ASTM D7846 uses sample-size-dependent weighting factors developed by Thoman et 
al. (1969) for ML-derived estimates (MLEs) for the two-parameter Weibull distribution. In general, such 
bias corrections are larger for the Weibull modulus, or shape factor, than for the characteristic strength.
For example, the statistical bias associated with the estimate for the shape factor is >7% for a sample size 
of 10, but <0.3% for the characteristic strength (ASTM D7846-16). 

Because Weibull parameter estimates can be derived from widely available statistics packages, it is 
important to note whether those packages provide bias-corrected estimates or not. In addition, parameter 
estimates may depend on the estimation method. For example, rank regression methods may more heavily 
weight the lowest strength data points, whereas ML appears to weight more heavily the highest strength 
values (Davies 1973). Bias corrections for rank-regression methods are described by Zhang et al. (2005).
Weighting factors to reduce bias of three-parameter Weibull distribution estimators have been developed 
by Cousineau (2009) using a two-step estimation approach in which two of the parameters are estimated 
iteratively via ML and the last one is determined algebraically. Simulation studies in later sections 
describe sample sizes at which bias may be of concern in the PCEA and IG-110 data sets.
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3. METHODS
To illustrate how parameter estimates from sampling of two billets of graphite would be expected to 

vary with sample size, we used Monte Carlo simulation to sample from hypothetical Weibull-distributed 
populations with different parameters, estimated the parameters using ML, and statistically analyzed the 
resulting groups of parameter values. The methods used are similar to those described by Khalili and 
Kromp (1991). The shape of the Weibull distribution changes drastically with the modulus. In some 
cases, the variance of the parameter estimates is dependent on that parameter, and so three values (0.8, 3,
and 15; see Figure 1) were chosen to illustrate effects of the shape parameter on variance.

Figure 1. Theoretical density functions for the three example Weibull distributions, where the load is 
normalized to the characteristic strength and the density is multiplied by that value.

Random samples were taken from the hypothetical Weibull distributions 1000 times each, for sample 
sizes ranging from 2 to 500. MLEs were found for each of the 1000 samples. Figure 2 provides boxplots 
illustrating the relationship between sample size and the distribution of the MLEs. Results are scaled by
the true parameter. That is, the percentile for the variance of the modulus is= / (2)

where q is the normalized parameter, is the desired quantile, and is the estimated modulus. A value of 
one on the vertical axis indicates that the MLE is equivalent to the true parameter. A value of 0.5 
indicates that the MLE was half the magnitude of the true parameter.

The boxplots display the 25th, 50th, and 75th percentiles, as well as the interquartile ranges (IQRs) 
and outliers. Twenty five percent of observations fall below the 25th percentile, the 50th percentile 
(median) is the middle observation, and 75% of observations fall below the 75th percentile. The 
percentiles are represented by horizontal lines in the boxplots. IQRs are represented by the whiskers that 
extend beyond the box. The IQR is the range of values between the 75th and 25th percentiles. The upper 
whisker for boxplots is calculated as the 75th percentile plus 1.5*IQR, while the lower whisker is the 25th
percentile minus 1.5·IQR. Outliers are observations that extend beyond the upper and lower whiskers and 
are represented as points.

As Figure 2 illustrates, the variability in the MLEs of both parameters decreases with sample size, and 
bias approaches zero, suggesting asymptotic efficiency and consistency. For all sample sizes, the 
simulated characteristic strength MLEs had a symmetric distribution and were unbiased. The simulated 
MLEs of the Weibull modulus were skewed towards higher values and were biased for small sample 
sizes. To compensate for this bias in estimates of the modulus, ASTM D7846-16 provides a table of 
unbiasing factors (Figure 3), from Thoman et al. (1969), that are to be included when reporting uniaxial 
strength data for graphite. Unbiasing factors for sample size greater than ~15 reflect less than 10% error 
in the estimated parameter value.
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Figure 2. Box plot giving true parameter (green horizontal line), first and third quantiles (box), upper and 
lower whiskers (line extent) and outliers of the distribution of MLE scale (top) and shape (bottom) 
parameters.
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Figure 3. Unbiasing factors for the Weibull modulus, as tabulated in ASTM D7846-16.

To illustrate how the variance of MLEs depends on sample size, we summarize the behavior 
described in the box plots of Figure 2 with a single representative percentile value. To provide data
comparable to similar reference functions provided in ASTM D7846-16, we selected the 95th percentile as 
this reference, as it represents the upper bound for the 90% confidence interval. Percentiles are scaled by 
the true parameter, as described above. The 95th percentile of the distributions of our Monte Carlo 
simulations are shown on linear and log scales in Figure 4, A and C, expressed as normalized difference 
from the true parameter (q95-1). In a discussion of confidence bounds on Weibull parameter estimates,
Duffy and Parikh (2014) note that a sample size of 30 is commonly used as minimum for a good estimate 
of the parameter values. The Monte Carlo results displayed in Figure 4, C, illustrate that the 95th

percentile of the parameter distribution for a sample size of 30 was approximately 34% larger than the 
true parameter. That is, the upper bound of a 90% confidence interval on the modulus estimate was 34% 
greater than the population parameter for a sample size of 30. Halving, or doubling that sample size, for 
reference, would yield upper-bound values 57% and 21% greater, respectively, than the true parameter. 
The confidence interval width changes at a faster rate for small sample sizes than for large sample sizes.
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Figure 4. Ninety-fifth percentile of MLE distribution for estimated modulus and characteristic strength, 
centered and scaled by the true parameter value, on linear (A and B) and log-log scales (C and D). Plot E
gives the normalized, 95th percentiles of the t value described in Equation (3) in log-log space. Symbols 
show results of Monte-Carlo simulations for this paper: solid (blue) curve shows the equivalent value 
calculated using equations in ASTM 7846-16, and dashed black lines show the relevant approximations 
described in Equation (4) and Equation (5). Monte-Carlo-based values in E include the effect of bias in 
the estimate of the modulus parameter. Red ellipses indicate areas where equations in ASTM D7846-16
poorly represent the dependence of the variance on sample size.
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Confidence-interval width changes as a function of both sample size and confidence level. ASTM 
D7846-16 provides tables and equations for constructing confidence bounds on MLEs based on 
percentiles that were obtained by Thoman (1969), using Monte Carlo simulation methods similar to those 
used in this study. Polynomials are provided for calculation of 96%, 90%, and 89% confidence intervals
as a function of sample size. The equations are described for use outside the range of values provided in 
the tables; i.e., “beyond 120 specimens, equations have been numerically fitted to the data in the table.”
Comparison of those functions with our Monte Carlo simulation results suggests that the equations are 
poor representations of the dependence on sample size for n >120 (Figure 4, A and C).

Unlike the modulus distribution, quantiles for the normalized characteristic strength parameter vary 
with the value of the modulus (Figure 4, B and D). Thoman et al (1969) demonstrated that variance can 
be normalized to the modulus using the function,=  ln( / ) (3)

where t is the normalized parameter, is the desired quantile, and is the estimated characteristic 
strength. Accordingly, ASTM-D7846-16 provides tables from Thoman et al (1969) giving this summary
parameter as a function of sample size for the same percentile values as for the modulus confidence-
interval equations. The expression demonstrates that the dependence on n in log space (Figure 4D) is 
independent of the modulus, so for known characteristic strength, the ratio of the estimated parameter to 
its known value can be calculated from the appropriate t value. Using data illustrated in Figure 4D, one 
can calculate the upper bound of the 90% confidence interval on the scale parameter, for a given sample 
size and modulus value. Burchell et al (2014) indicate that the Weibull modulus for graphite typically 
ranges from 5 to 15. Using the lower end of that range provides a conservative estimate of the dependence 
of the characteristic strength variance on samples size. For that modulus, the 95th percentile would be 6%
larger than the true scale parameter for a sample size of 30. Again, for reference, halving or doubling the 
sample size would yield upper bound values 9 and 4% greater, respectively, than the true parameter value.

As with the modulus, for n >120 specimens, ASTM D7846-16 provides equations that were 
numerically fitted to the Monte Carlo simulation results of Thoman (1969). Comparison of the equation 
values for the 95th percentile with equivalent values calculated from our Monte Carlo simulations up to 
n = 500 again indicates that the provided equations are a poor representation of behavior for n >120 
(differences at low sample sizes probably reflect differences in bias). A reference for the source of the 
equations is not provided, and no such polynomials are provided in Thoman et al (1969) or Thoman et al 
(1970). It should be noted that numerous studies have examined inferential statistics for estimators of 
Weibull parameters, and more recent references abound. Scholz (2015) provides a useful discussion of the 
tabulation of confidence quantiles, which may be consulted if more accurate descriptions of those 
relationships are needed.

3.1 Approximations to Define Dependence of Parameter Estimates 
on Sample Size

Curves presented in Figure 4, C and E, suggest that the normalized confidence-interval width for the 
modulus and the normalized t parameter for the characteristic strength, Equation (3), are nearly linear in 
log-log space beyond a sample size of approximately 10. That is, beyond that sample size, the change in 
the log of the variance of the function is proportional to the change in the log of the change in sample size 
while, for smaller sample sizes, that relationship is steeper and non-constant. The approximate linearity in 
log-log space indicates that a simple power function may give a reasonable estimate of that relationship,
and one that is both easier to use than the polynomial expressions provided in ASTM D7846-16 and 
allows inferences about larger sample sizes.

For the modulus (shape) parameter, curve fitting for sample size, n, from 15 to 500 indicates that the 
normalized 95th percentile value can be approximately described as



9

= 2.951 . + 1. (4)

Similarly, for sample size between 9 and 500, the t value for the characteristic strength can be 
approximated as,t = 1.67 . . (5)

The equation for the confidence bound for the scale parameter is more complicated because of the 
dependence on the modulus value:= . .

(6)

The equations demonstrate that the variance of the modulus parameter declines as, approximately, 
n-2/3 while the variance of the Thoman’s t value for the scale parameter declines as the inverse of the 
square root of the sample size. That is, the upper bound on the modulus decreases faster as a function of 
sample size than the upper bound of the characteristic strength parameter for a fixed modulus.

The approximations defined in Equation (4) through Equation (6) are intended to illustrate the 
general nature of the dependence of MLE variance on sample size, rather than to provide a high-order 
accuracy description of that relationship. These equations express the relationship between MLE variance 
and sample size, beyond where it has a large break in slope (in log – log space). Higher order expressions 
could yield more accurate approximations that could be used to replace those included in ASTM D7846-
16.

4. STRENGTH MEASUREMENTS FROM BILLETS OF PCEA AND 
IG-110 GRADE GRAPHITE

In the example described above, specimens are assumed to be drawn independently from a known 
Weibull distribution. The formation process in graphite may involve factors that can lead to spatial trends 
in material properties that negate the assumption of independence. Analyses used to characterize a body 
of graphite should, therefore, account for spatial trends in breaking strength. This is presumably the 
impetus for the ASME method requirement for representative data for characterization of material 
properties for a particular grade of graphite:

Measure two specimens in both the with-grain and against-grain direction from 
both the center and periphery of a slice taken from the billet. The slices shall be 
taken from the top, middle, and bottom of the billet relative to the orientation of 
the billet during first bake. Slices shall be selected so that there are 
approximately equal numbers of slices from the top, middle, and bottom over all 
of the billets that are measured for the Material Data Sheet. (ASME/BPVC SEC 
III-5 – Section III, Division 5 High Temperature Reactors, Article 
HHA-III-4000).

Examination of bias and uncertainty in parameter estimates is applied in samples of two modern 
nuclear grades of graphite as a function of the number of measurements. We analyzed data from 
numerous compression-strength measurements conducted as part of the Baseline Graphite 
Characterization study. A total of 230 compressive strength tests were completed on specimens from a
billet of PCEA graphite, while 48 tests were completed on specimens from one billet of IG-110 graphite.
PCEA graphite is a much less consistent graphite grade than IG-110, and some billets have exhibited
spatial trends in breaking strengths.

4.1 Experimental Measurements
The goals of this program necessitate the accurate tracking of individual specimen source, position, 

and orientation information, each of which is recorded and embedded in the applicable test files. PCEA 
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and IG-110 graphite billets were sectioned, and test specimens were extracted in a manner that reflects 
not only the geometry of the as-manufactured billet, but also the forming technique used to compact the 
carbonaceous filler and binder into shape prior to graphitization. 

The extrusion process for PCEA resulted in a geometry that was sectioned into seven layers that 
yielded ideal parallel and transverse orientations, as well as a radial orientation that is tangential to the 
outer radius at varying distances from the billet centerline. Figure 5 illustrates the relationship between 
specimens collected for different tests and typical billet sections used. More information about this PCEA 
billet can be found in the report ECAR-3725, “Baseline Characterization Database Verification Report—
PCEA Billet 02S8-7.” The IG-110 partial billet was a rectangular parallelepiped that was sectioned into 
four sub-blocks. Those sub-blocks were, in turn, machined into specimens specifically for flexural, 
tensile, and compressive testing. The specimens were machined in both a parallel and a transverse
orientation. More details about the IG-110 billet can be found in the report ECAR-3621, “Baseline 
Characterization Database Verification Report—IG-110 Billet 08-09-0527.”

Figure 5. Cylindrical extruded billets of PCEA graphite are sectioned into seven slabs along the z-axis 
and quartered into sub-wedges, from which test specimens are extracted in parallel, transverse, and radial 
orientations.

The physical and mechanical properties being reported are based upon a systematic evaluation of 
specimens machined to the specific guidelines of the published standards from ASTM, International. The 
compressive testing results used in this study were carried out following ASTM C695-91 (Figure 6).
Additional details of the strength testing results are described in Carroll et al. (2016). 
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Figure 6. The ASTM-based configurations for compression testing of nuclear-grade graphite.

5. RESULTS
A qualitative comparison of the distribution in the strength of the graphite billets is apparent in a three 

dimensional (3D) representation of those values at their position within the original billet. Figure 7 shows 
those values measured in both IG-110 and PCEA, from which it is clear that the strength of the extruded 
(PCEA) graphite has an end-to-end variability based upon the relative range of values measured as well as 
a slight inside-outside gradient with higher strength values nearer the billet surface. By contrast, the 
IG-110 data have much lower variability and no apparent spatial dependence. The apparent differences in 
strength variability between the two graphite grades reflect expected behavior based on production 
methods.

ASME SEC III-5 HHA-III-4000 describes balanced sampling from multiple regions of a billet, with 
both against- and with-grain orientation, to obtain a sample representative of the entire billet. The 
balanced sampling recognizes that material strength may depend on spatial position or grain orientation. 
The ASME guidance also describes analysis of the measurements using a set of Weibull parameters fitted 
to the entire distribution, which effectively presumes that all observations are independent accounting for 
potential correlation between observations. Characterizing the distribution of breaking strengths 
throughout the entire billet using a distribution assuming independent responses may not lead to accurate 
point and variability estimates of the true Weibull parameters. Models accounting for correlations
between observations may be evaluated as part of future characterization efforts.
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Figure 7. Three-dimensional display of compressional strength at failure measurements from PCEA and 
IG-110 billets, representing 169 specimens (PCEA) and 48 specimens (IG-110), respectively.

5.1 Effects of Spatial Trends in Material Strength on Fitted Weibull 
Parameters

The billets examined in this study—which differ greatly in variance of measured compressive 
breaking strength and dependence of that parameter on both space and grain orientation—provide good 
examples for exploring how spatial trends in breaking strengths affect inferences about Weibull 
parameters. As a first consideration, we explore how well the Weibull distribution characterizes the
observed data. Figure 8 compares the distribution of breaking strengths observed in the two subject billets 
to fitted Weibull distributions. Although the variances of the strength distributions of the two graphite 
grades differ greatly (Figure 8), both appear to be reasonably modeled by a Weibull distribution, and 
goodness-of-fit tests do not provide evidence against a Weibull distribution for either data set (Table 1). 

Weibull parameters describing the distributions shown in Figure 8 were determined via maximum 
likelihood estimation. The MLEs for the modulus and characteristic strength parameters for the PCEA 
data were 7.57 and 66.6, respectively. Associated 90% confidence intervals using the entire data set were
(6.99, 8.27) and (65.7, 67.6), respectively. MLEs for the modulus and characteristic strength parameters 
for the IG-110 data were 38.94 and 77.03, respectively. Associated 90% confidence intervals using the 
entire data set were (33.42, 48.6) and (76.53, 77.51). 



13

Figure 8. Frequency distributions of breaking strengths observed (shaded area histograms) to those 
simulated from fitted two-parameter (red curves) and three-parameter (green curves) Weibull distributions. 
Accompanying box plots show range, quartiles, median, and outliers.

ASME guidance for sampling a billet implies recognition that different groupings may have different 
strength distributions so that individual random sampling within each location provides a more 
representative data set than randomly sampling the entire billet. Because our characterization study 
includes data from such a large number of specimens, the data provide a means of comparing consistency 
in Weibull-parameter estimates between the different groupings described in the ASME sampling 
guidance.

The groups defined by the ASME guidance are with-grain and against-grain orientation, from center 
and periphery of slices taken from the top, middle, and bottom of the billet relative to the orientation of 
the billet during first bake. Histograms (Figure 9) for those bins of our data sets demonstrate that 
differences among groups are more pronounced in the PCEA data than in the IG-110 data. PCEA data 
appear to have decreasing median breaking strengths with increasing vertical location on the billet in both 
against grain and with grain locations. By contrast, the distributions of breaking strengths appear very 
similar in each of the groups for the IG-110 data. Middle locations are only observed in two of the six 
binned locations, however, so the middle/outer comparison from IG-110 is incomplete. 
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Figure 9. Histograms of observed breaking strengths for a billet of PCEA graphite and a billet of IG-110
graphite, grouped to reflect potential differences that are combined by sampling according to 
ASME/BPVC SEC III-5 – Section III, Division 5 High Temperature Reactors, Article HHA III 4000.
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The sample size for each grouping each billet is summarized in Table 1, with calculated MLEs for 
each group, and Cramer-von Mises fit statistics. The MLEs obtained illustrate the range of parameter 
values that could be obtained from sampling of different groups defined by ASME sampling guidance. 
Scaled to the MLEs from the entire sample, the differences in both parameters are larger among PCEA 
groups than among IG-110 groups.

While comparison of the Weibull parameters is useful, a better measure of the effects of differing
parameter values is the difference in the integrated probability density function, the Weibull cumulative 
distribution function (CDF),( , , ) = 1 e ;    , > 0;   0 (7)( ) = 0 ;    < 0
because the probability of failure may be used as a criterion for determining the allowable stress as a 
function of material quality (Burchell et al. 2014). In the ASME simple-assessment method, for example, 
the Weibull CDF is used to compute the allowable stress from the target probability of failure (POF). It 
should be noted, however, that probability of failure, as expressed by the Weibull CDF, is different from 
the POF of a component evaluated using the volume-weighted approach described in the ASME 
HHA-3230 full assessment.

Comparison of CDFs (Figure 10) generated from Weibull parameters representing groupings shown 
in Figure 9 demonstrates that relatively large differences in the POF curves exist among positional 
groupings for the PCEA data, with the greater differences in the with-grain orientation specimens. CDFs 
for the same groupings in the IG-110 billet display little variance. To provide an example of the effect of 
these differences, the load corresponding to a POF of 1E-3 was calculated from each CDF, and the range 
of those loads determined for each billet. In the PCEA billet, the corresponding load had a range of 
15.6 MPa among vertical locations in the against-grain orientation and a range of 21.3 MPa among 
vertical locations in the with-grain orientation. This is compared to ranges of 2.4 MPa and 1.1 MPa, 
respectively, in the IG-110 billet. Such variation among POF for given locations in the PCEA billet 
suggests that using one CDF to represent the POF among all locations in that material may be misleading.
Where spatial trends exist in material properties, some regions of a billet may have strength properties for 
which probability of failure at a particular stress is less than predicted by properties derived from treating 
all specimens as independent measures of the same statistical distribution.



16

Figure 10. Comparison of Weibull CDFs for MLE parameter values obtained for different groupings of 
specimens from the two subject graphite billets. A and B show CDFs from against-grain groups. C and D
show CDFs from with-grain groups. Bold black curves show CDFs for that larger collection of specimens 
for each billet. Abscissas are scaled to provide similar minimum and maximum cumulative probabilities 
for each billet.
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Table 1. Fitted Weibull parameters (MLEs), by location and orientation with respect to grain direction for 
compressive strength of specimens from billets of PCEA and IG-110 graphite.

PCEA IG – 110

Orientation & location
Sample 

size Shape Scale CVM p
Sample 

size Shape Scale CVM p
All 230 7.6 66.6 0.244 48 38.9 77 0.166
Against 167 9.1 67.7 <0.010 24 44.7 76.8 0.109
With 63 5.5 64.5 <0.010 24 36.4 77.2 0.124
Center 179 7.5 66.1 0.153 28 38.6 77.4 0.216

Periphery 51 8.1 68.2 0.039 20 47.1 76.4 >0.250
Against, High 49 7.9 61.7 <0.010 9 41.3 76.7 >0.250
Against, Middle 53 11.9 66.7 <0.010 9 53.4 76.6 >0.250
Against, Low 65 12.5 71.7 >0.250 6 43.3 77.2 0.088
With, High 16 4.2 48.5 <0.010 9 36.9 78.0 <0.010
With, Middle 17 5.8 61.2 0.036 7 41.7 76.3 >0.250
With, Low 30 8.4 69.3 0.143 8 43.2 77.1 >0.250
Against, High, center 30 7.9 60.3 <0.010 8 41.5 76.9 >0.250
Against, Low, center 40 10.6 70.4 0.040 4 48.4 77.1 0.234
Against, Middle, center 32 10.4 66.1 <0.010 8 50.5 76.6 0.166
Against, High, periphery 19 8.3 63.8 0.088 1 - - -
Against, Low, periphery 25 17.9 73.5 0.011 2 37.0 77.3 >0.250
Against, Middle, periphery 21 16.2 67.4 >0.250 1 - - -
With, High, center 9 4.9 49.9 <0.010 2 37.7 80.0 >0.250
With, Low, center 17 9.9 70.9 0.070 4 60.7 78.0 >0.250
With, Middle, center 9 5.1 61.3 0.046 2 255.6 77.9 >0.250
With, High, periphery 7 3.6 46.7 0.026 7 78.7 77.0 >0.250
With, Low, periphery 13 7.4 67.1 >0.250 4 40.9 76.1 >0.250
With, Middle, periphery 8 7.0 61.0 >0.250 5 52.7 75.1 0.153
Location in the billet is described as against/with grain – high/middle/low along major axis – center/periphery for 
radial distance from major axis. IG–110 was sampled only in the high and middle against-grain inner categories; 
CVM p is the p-value for the Cramer-von Mises goodness-of-fit test. <0.010 indicates rejection of null hypothesis 
that data fit Weibull distribution. Lower section of table represents groups defined based on ASME HHA III 4000.

5.2 Effects of Sampling Balance on Fitted Weibull Parameters
The large number of measurements obtained from our two subject graphite grades, several times 

larger than the ASME-required sample size of 24, provide an opportunity to examine how the ASME 
guidance for sampling might affect inferences about parameter values. To compare how Weibull 
parameters estimated from our complete data set compare to those that would be obtained when sampling 
according to the ASME guidance, we performed a bootstrap study using two different sampling methods 
for each billet, for sample sizes between 12 and 256 for the PCEA billet, and between 8 and 256 for the 
IG-110 billet. In bootstrapping, we repeatedly sample from the collection of test results with replacement. 
As with the Monte-Carlo process described earlier, the confidence-interval describes variability in
repeated sampling at the same sample size. Dependence on sample size is then illustrated by repeating 
that process for many sample sizes.



18

In the first bootstrap approach, we randomly draw from the full set of specimens tested for each billet. 
In the second method, we sample from specified location groups to reach the specified sample size. 
Weibull parameter estimates were then found from each of the bootstrapped samples for each sample size.
Next, percentiles were used to create 90% confidence intervals based on 1000 bootstrap parameter 
estimates for each sample size. Results (Figure 11) demonstrate that for the IG-110 data, where variability 
is relatively low (i.e., large shape factor), both methods yield essentially the same parameters and 
confidence-interval widths at all sample sizes. For the PCEA data, conversely, the two methods yield 
distinctly different parameter estimates and confidence-interval widths, particularly for the Weibull
modulus. The difference may reflect the fact that the complete data set is not weighted proportionally to 
the ASME guidance in that it contains approximately three times as many against-grain specimen tests as
with-grain specimen tests, and the difference in the MLE moduli between those groups is relatively large 
(Figure 10, Table 1). The median MLE modulus for the PCEA data, calculated using the ASME guidance,
is about 3/4 of the estimate obtained from random sampling of the larger dataset, which may be important 
in some analyses. The difference in the characteristic strength estimate is relatively small (0.97), and may 
have little practical importance.

Plotting the two different CDFs for each of the two graphite grades (Figure 12, A and B), with 
abscissas scaled to yield the same minimum and maximum probability, illustrates that differences are 
substantial at midrange probabilities for the PCEA billet, but not the IG-110 billet. While differences in 
the CDFs appear relatively small on the linear scale of Figure 12, A and B, the relevant POFs are 
generally in the range of 1E-3 to 1E-4. Viewed in log scale (Figure 12, C and D), the differences in the 
CDFs are more apparent. At 1E-3 probability, the difference in the “as-sampled” load is 4.8 MPa in the 
PCEA data, while the corresponding difference for the IG-110 data, 0.49 MPa, is an order of magnitude 
smaller. For the PCEA data, the ASME method of sample selection yielded a more conservative set of 
parameters, with generally higher probability of failure. For the IG-110 data, the reverse was true. This 
difference demonstrates that sampling strategy influences the resulting strength distribution, and the 
ASME-weighting will not always yield more conservative results than analysis focused on a specific 
location or grain orientation when strength depends on those factors.

The bootstrapping results also illustrate how the above-described difference due to sample selection 
compares to the effect of sample size on parameter values and, hence, the probability-of-failure curve. 
Assuming an ASME sampling scheme is used, we calculated how the load yielding a POF of 1E-3 would 
change for a doubling of sample size, from N=24 to N=48. The changes in the median parameter 
estimates for that change in sample size (Figure 11) are relatively small, and for the PCEA and IG-110
data, the resulting differences in the load at the example POF were 0.14 MPa and 0.64, respectively. 
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Figure 11. Confidence intervals derived from bootstrapping of PCEA and IG-110 data at different sample 
sizes, via random sampling of the complete set of observations (gray shading) and random sampling of 
the same set, but with each set containing subsamples balanced according to the ASME guidance for 
sampling (blue shading). Solid lines indicate median parameter values; vertical reference lines are located 
at the ASME recommended sample size of 24 and at the sample size of the full collection of specimens 
from each billet.

Sample size
0 50 100 150 200 250

C
ha

ra
ct

er
is

tic
 S

tre
ng

th
 [M

P
a]

75.5

76.0

76.5

77.0

77.5

78.0

78.5

Sample size
0 50 100 150 200 250

M
od

ul
us

20

30

40

50

60

70

80

90

100

Sample size
0 50 100 150 200 250

C
ha

ra
ct

er
is

tic
 S

tre
ng

th
 [M

P
a]

60

62

64

66

68

70

72

Sample size
0 50 100 150 200 250

M
od

ul
us

4

6

8

10

12

14

7878 578 578 578 578 578 578 578 578 578 578 578 578 578 58

pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp Sa p e sSa p e s e Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sizSample size Sample sSample size SampleSample si e S lS l i S lS l i S lS l i SS l i SS l i SS l i SS l i SS l i SS l i SS l i SS l i SS l i SS l i SS l i SS l iS l iS l iS l iS l iS
00 50 00100 150 200 2100 150 200 2100 150 200 2100 150 200 2100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 200100 150 20100 150 20100 150 20100 150 20100 150 20100 1 0 20

PPPPPPPPPPPPPPPPPPPPPPPPPPP
a]

78.578 58 55

e
[[[[MMM 8 0M 78.0M 78.0M 78.0M 78.0M 78.0M 78.0M 78.0M 78.0M 78.0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 78 0M 8 0MMMMMMM

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

SSSSSSSSSSSSSSSSSSSSS

thhhhhhhhhhhhhhhhhhhhhhhhhh
 hhhhhhhhhhhhhhhhhhhhhhhhh 
[[[[[[[[[[[[[[[[[[[

tic
 S

tre

77.0

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnnnnnn
5n 77.5n 77.5n 77.5n 77.5n 77.5n 77.5n 77.5n 77.5n 77.5n 77 5n 77 5n 77 5n 77 5n 77 5n 77 5n 77 5n 77 577 577 577 577 577 577 577 577 577 577 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5g 77 5gggggggggggggtttttttttttttttttttttttttt

PCEA - shape

IG-110 - shape

PCEA - scale

IG-110 - scale

Bootstrapped 90% confidence intervals

727272

Random subset of full collection of specimens
Random, but balanced by ASME groupings

P
a] PCEP

72
PCEP PCE



20

Figure 12. Cumulative distribution functions for our two subject graphite billets, using ML-derived 
parameters calculated from all observations determined in our characterization effort (red curves) and by 
bootstrapping with sampling guided by ASME recommendations for sampling with respect to location 
and grain-orientation (blue curves). Graphs are shown with linearly scaled probability (A and B) and 
log-scaled probability (C and D). Abscissas are scaled to provide similar minimum and maximum 
cumulative probabilities for each billet.

5.3 Effects of Estimation Methods on Fitted Weibull Parameters
ASME Section III Div. 5 Subsection HH provides code rules for simplified as well as full assessment 

of graphite core components. Kanse (2015) explains that the rules for the simplified approach are more 
conservative and, if a component cannot be qualified using this approach, full assessment can be carried 
out with the full assessment based on a three-parameter distribution. The two-parameter method described 
is the rank-regression approach, rather than the MLE method applied in this study. The three-parameter 
method described in the ASME full-assessment approach includes a location parameter that effectively 
describes a minimum breaking strength for the material by replacing x in Equation (1) by (x – ). Because 
the characteristic strength in the three-parameter model is scaled to a different reference point, the 
modulus and characteristic strength parameters of the two different models are not directly comparable. 
While the parameters of the two methods have different meanings, the distributions differ primarily in the 
left tail of the distribution.

Methods of estimating parameters for a two-parameter Weibull distribution generally yield similar 
results. Different methods of estimating parameters for a three-parameter distribution, however, may yield
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considerably different results because methods of selecting the location parameter differ. To illustrate 
such differences, Figure 13 compares curves generated using three different methods on a rank-regression 
plot, using data from our subject billets. The rank-regression method linearizes the observation data by 
plotting an estimated probability function against the natural log of the measured breaking strength. 
Linear fits produced by two-parameter methods differ relatively little. A three-parameter curve plotted in 
the same way, however, displays a poor fit to the low strength values because it is based on a method that
estimates the location parameter ( ) using the value of the minimum observation and estimates m
using the rest of the observations. Another commonly applied method calculates the minimum breaking 
strength by fitting to curvature in the linearized plot of observations, then using MLE to recalculate 
modulus and characteristic strength from the fitted location parameter. Because different software 
packages may apply different fitting methods for the three-parameter model, caution is advised when 
comparing parameters obtained from different software packages or different models. As an example of 
the differences in the parameter estimates resulting from different methods, we compared parameters 
obtained using several different methods applied to the observations from each of our subject billets. As 
anticipated, parameter values are more similar for the two-parameter models, and the largest differences 
are seen in the three-parameter model results for the PCEA data. Harper et al (2011) provides a detailed 
discussion of this problem, using 12 different statistical software packages to demonstrate that different 
packages may yield “fairly major differences in estimated parameters.”

Figure 13. PCEA and IG-110 billets compressive-strength data plotted on rank-regression plots. Curves 
illustrate different methods of parameter estimation; MLE=maximum likelihood estimation; RR=rank 
regression; JMP = SAS JMP software calculation; RR non-lin = non-linear fit to match observations in 
rank-regression space; RR & MLE = ML for modulus and characteristic strength parameters following 
non-linear regression for location parameter in rank regression space. Abscissas are scaled to provide 
similar minimum and maximum cumulative probabilities for each billet.

While the linearized plots of the rank regression method illustrated in Figure 13 are an expression of 
CDF, the probability of failure in such plots is on a scale contrived for linear regression, not for clarity of 
the relationship between probability of failure and load. Thus, as in previous examinations of the effect of 
differences in parameter values on POF, we use the Weibull CDFs as the best measure of the impact of
differences in parameters on POF. Comparison of CDFs (Figure 14) for each of the methods illustrated in 
Figure 13 indicates that differences are larger than the effect of sampling balance described in the 
previous section. Using the several estimation methods in this example, the calculated loads
corresponding to a POF of 1E-3 have a range of 18 MPa for the PCEA data and 7 MPa for the IG-110
data. 
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Figure 14. Cumulative distribution functions for the PCEA (A) and IG-110 (B) billets, using parameters 
calculated from all observations determined in our characterization effort, but using different estimation 
methods. MLE = maximum likelihood estimators; RR = rank regression; JMP 1 = JMP Distribution 
procedure; JMP 2 = JMP Reliability procedure; RR-MLE = rank regression to fit location parameter, 
followed by MLE for remaining parameters. Abscissas are scaled to provide similar minimum and 
maximum cumulative probabilities for each billet.

5.4 Comparison of Effects on an Example Design Factor
To illustrate how differences in Weibull parameters might affect design considerations, we examined 

how the differences in parameters affect the load that yields an arbitrarily selected POF of 1E-3. This 
section compares the differences in that value that were introduced by the several factors described in the 
preceding sections. Correlation of strength with in-billet location yielded considerable differences in the 
CDFs that govern the relationship between load and POF. Vertical location was associated with relatively 
large differences in load for PCEA, but less so for the IG-110 data. For with-grain specimens, vertical 
position yielded ranges of 21.3 MPa and 1.1 MPa for the PCEA and IG-110 billets, respectively. For 
against-grain specimens, the corresponding ranges were 15.6 MPa and 2.4 MPa. Such differences among 
subgroups in a billet lead to differences in Weibull parameter values when a single distribution was used 
to represent an entire billet. This was reflected in the bootstrapping results comparing ASME sample 
weighting to the weighting used in this study, where the effort to increase sample size introduced some 
imbalance in the weighting by location and grain orientation. Expressed again as differences in the load 
with a POF of 1E-3, the ASME vs non-ASME sampling balance yielded differences of 5 MPa and 0.5 
MPa at POF=1E-3 for the PCEA and IG-110 billets. Using bootstrapping results from the ASME 
sampling approach, the effect of a change in sample size from 24 to 48 yielded corresponding differences 
of 0.1 MPa and 0.6 MPa. Estimation method was also shown to have a relatively large effect on the 
resulting cumulative distribution functions. Based on comparison of five different fitting methods, the 
ranges in the load corresponding to POF=1E-3 were 18 and 7 MPa for the PCEA and IG-110 data, 
respectively. While parameter values differ, their effect on the resulting POF and load is what is used in 
design decisions. Differences in load associated with a POF of 1E-3 were relatively large for vertical 
location of the PCEA data and for different parameter estimation methods. Differences in load were 
relatively small when comparing sampling method and sample sizes of 24 and 48.

6. CONCLUSIONS
INL’s Baseline Material Property program provides many measurements of different material 

properties on a variety of nuclear graphite grades being investigated for irradiation-induced changes in 
material properties. The baseline material properties provide an unirradiated reference for comparison 
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with measurements of those properties after irradiation. This study describes how uncertainty, or variance, 
in estimates of important material properties, like compressive strength, may depend on sample size, 
spatial trends and parameter-estimation methods. Compressive-strength data from two large collections of 
specimens from a billet of PCEA graphite (230) and a billet of IG-110 graphite (48) are used to illustrate 
these dependencies. The grades of graphite used represent opposite ends of the spectrum of relative 
variability in strength measurements.

Monte Carlo and bootstrapping simulation methods were used to examine variance in Weibull 
parameter estimates as a function of sample size. Results were consistent with what previous statistical
analyses have shown about the relationship between sample size and width of the confidence interval for 
MLE parameters when samples are repeatedly drawn from a Weibull distribution. As a function of sample 
size, the precision of the modulus estimate increases faster than of the characteristic strength. The rate of 
those increases is greatest up to a sample size of approximately 10. At smaller sample size, the modulus 
MLEs are biased. Those relationships held for the PCEA data despite the clear spatial trends in strength.

ASTM D7846-16 provides equations that describe the dependence of the variance of MLE parameters 
on sample size. Using the same methodology, we show that the polynomials provided for variance 
dependence on sample size are inaccurate for sample sizes greater than ~120. We provide approximations 
to that relationship that illustrate relative constancy, for sample size > ~10, in the logspace relationship of 
the modulus variance and the log-transformed characteristic strength variance. The equations demonstrate 
that the variance of the modulus parameter declines approximately as n-2/3 while the variance of the 
Thoman’s t value for the scale parameter declines as the inverse of the square root of the sample size. 
That is, the upper bound on the modulus decreases faster as a function of sample size than the upper 
bound of the characteristic strength parameter for a fixed modulus. These equations can be used to 
evaluate the tradeoff between changes in sample size and changes in precision.

Bootstrapping provided a means of comparing Weibull parameters obtained using ASME’s guidance 
for specimen collection to those obtained using different weighting in a case where strength is related to 
position in a billet and to grain orientation and a single distribution is used to characterize the billet. 
ASME specifies that samples be collected with equal representation in all locations and grain orientations.
Parameter values obtained using ASME’s method were different from those obtained using random 
sampling of the complete data sets, and this was particularly true for the PCEA data. In addition, while 
the ASME approach yielded more conservative parameters for the PCEA data, the opposite was true for 
the IG-110 data. The difference observed for the PCEA data set likely reflects the larger number of 
against-grain specimens collected, which had generally higher strength than the with-grain specimens. 
This emphasizes the importance of the dependence of strength on location or grain orientation and 
suggests that it may be prudent to weight specimen collection toward the weaker subgroups if a 
conservative estimate as desired, as the equal weighting method recommended by ASME would will not 
always provide the most conservative Weibull parameters. Because spatial correlations commonly exist in 
certain grades of graphite, future work may involve developing a methodology for parameter inference 
that relaxes the assumption of independent specimens.

ASTM and ASME codes recommend different parameter-estimation methods and models of the 
Weibull distribution for the full and simplified assessments. In this study we found that the rank-
regression method and the MLE method for the two-parameter Weibull distribution yielded similar 
Weibull parameter estimates and, therefore, similar CDFs. Including the location parameter in the three-
parameter Weibull distribution changes the meaning of the modulus and characteristic strength 
parameters from those for the two-parameter case. As a result, two- and three-parameter Weibull CDFs 
can be compared, but individual parameters of the  two- and three-parameter Weibull models should not 
be compared. Additionally, different software packages use different methods to estimate parameters of 
the three-parameter Weibull distribution, and care should be given as to how that may affect inferences
about the probability of failure.
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